Orthogonal Polynomials

1 Introduction

Mathematically orthogonal means perpendicular, that is, at right angles. For example, the set of vectors
{z,y, 2} in three-dimensional sppace are orthogonal. The concept of orthogonality can be formalised, with
respect to vectors, as

z-y=0; z-2=0; y-z=0,

that is, the dot product of two orthogonal vectors is zero. Indeed the set of vectors {z,y, z} is an orthogonal
set. If {z,y, 2z} are all unit vectors we say that {z,y, z} is an orthonormal set of vectors. Orthogonal vectors
are linearly independent and {z,y,z} therefore spans three-dimensional space. Thus any point in space
may be written in terms of its components in the x, y and z directions (or indeed in terms of components
in the directions of any three orthogonal vectors). In this way {z,y, 2z} forms a basis for three-dimensional
space.

1.1 Orthogonal Functions

Two functions, f;(x) and f;(z), are orthogonal on an interval [a, b] if

b
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Mathematically we say that the inner product of the functions f;(z) and f;(x) is zero. The functions are
orthonormal if

b
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is the Kronecker delta function.

2 Orthogonal Polynomials

A set of orthogonal polynomials is an infinite sequence of polynomials, po(z),p1 (z),p2(z), ..., where p,(z)
has degree n and any two polynomials in the set are orthogonal to each other, that is,

b
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The set of polynomials is orthonormal if

b
/ fi(z) fi(x)dx = by (4)

The interval [a, D] is called the interval of orthogonality and may be infinite at one or both ends.



Any infinite sequence of polynomials {p, }, with p,, having degree n forms a basis for the infinite-dimensional
vector space of all polynomials. Such a sequence can be turned into an orthogonal basis using the Gram-
Schmidt orthogonalisation process, by projecting out the components of each polynomial that are orthog-
onal to the polynomials already chosen.

2.1 Hilbert Space

Hilbert (David Hilbert 1862-1943) space generalises the idea of Euclidean space (that is, three-dimensional
vector space etc) to infinite-dimensional spaces. Mathematically, a Hilbert space is an inner product space
that is complete.

Hilbert spaces typically arise as infinite-dimensional function spaces. An element of a Hilbert space can
be expressed by its coordinates with respect to an orthonormal basis of the space (directly analogous to
{z,y, z} coordinates in three-dimensional vector space).

Note:

Complete means that as a sequence of functions approaches some limit, then the limit is also part of the
Hilbert space. For example, if a molecular wave function is expanded in terms of orthogonal basis functions
of a Hilbert space, then the molecular wavefunction is also an element of the Hilbert space.

The concept of Hilbert space offers one of the best mathematical formulations of quantum mechanics.
Quantum mechanical states (wavefunctions) are described by vectors in a Hilbert space, quantum mechan-
ical observables can be expressed by linear operators and quantum measurement is related to orthogonal
projection.

2.2 Properties of Orthogonal Polynomials

All sets of orthogonal polynomials have a number of fascinating properties.

e Any polynomial f(z) of degree n can be expanded in terms of pg,pi,...ps, that is, there exist
coefficients a; such that  f(z) = > 1, aipi().

e Given an orthogonal set of polynomials {po(z),pi(x)...}, each polynomial, p;(z) is orthogonal to
any polynomial of degree < k.

e Any orthogonal set of polynomials {po(x),p1(z) ...} has a recurrence formula that relates any three
consecutive polynomials in the sequence, that is, the relation  p,+1 = (an + by)pn — CnPn—1 exits,
where the coefficients a, b and ¢ depend on n. Such a recurrence formula is often used to generate
higher order members in the set.

e Each polynomial in {po(z),p1(z)...} has all n of its roots real, distinct and strictly within the
interval of orthogonality (ie not on its ends). This is an extremely unusual property! It is particularly
important when considering the classes of polynomials that arise as quantum mechanical solutions to
a given Hamiltonian (or other Hermitian) operator - see below.

e Furthermore the roots of the n*" degree polynomial, p,, lie strictly inside the roots of the (n + 1)
degree polynomial p,, 1.



2.3 Examples of Orthogonal Polynomials

The field of orthogonal polynomials was developed in the late 19th century and many of the sets of orthog-
onal polynomials described arose from descriptions of specific physical problems.

Legendre Polynomials
These polynomials are orthogonal on the interval [—1, 1]. They arise as solutions to Legendre’s differential
equation (Adrien-Marie Legendre 1752-1833),
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This equation is frequently encountered in Physics, particularly when spherical polar coordinates are used
and where the problem has cylindrical symmetry. Legendre polynomials form part of the quantum me-
chanical solution for rotational motion.

Py(z) = 1

Pi(z) = =

Py(z) = %(3;62 _ 1)

Py(z) = %(5;63 ~ 32)

Py(z) = %(351‘4 —302% + 3)

Ps(z) = %(631‘5 — 702° + 15z)

Ps(z) = %6(231936 —3152* + 10522 - 5) ...

Laguerre Polynomials

The Laguerre polynomials, L,, are solutions to Laguerre’s differential equation (Edmond Laguerre 1834-
1886),

o1 oL, .
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This equation arises in the radial part of the Hamiltonian for one-electron atoms.

L[) (Z’) =1
Ly (.T) = —x+1
1
Ly(z) = 5(3:2 — 4z + 2)
1
Li(z) = 6(—9:3 +92? — 18z + 6)
1
Ly(z) = ﬂ(a:‘* — 162° + 722% — 962 + 24)
1
Ls(z) = 1—20(—335 + 252* — 2002° + 6002 — 600z + 120z)
1
Le(z) = %(xﬁ — 362° + 450z — 2400z° + 54002 — 4320z + 720) ...

The Laguerre polynomials are orthogonal over the interval [0, +00) with respect to the weight function e™*.
Indeed the radial component of the wavefunction of the one-electron atom is obtained by multiplying the
Laguerre polynomials by e™®



Hermite Polynomials
Hermite polynomials, Hy,(z), arise as part of the solution to the quantum harmonic oscillator Hamiltonian.
They are solutions to Hermite’s equation (Charles Hermite 1822-1901):

oH?
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—2zH, + A\H,, =0, with A=n (7)

The Hermite polynomials are orthogonal over the interval (—oo, +00) with respect to the weight function
e~"/2 Indeed the quantum harmonic oscillator wavefunctions are obtained by multiplying the Hermite

polynomials by e—2/2.
Ho(z) = 1
Hi(z) = 2=z
Hy(z) = 42° —2x+2
Hs(z) = 82°—12z
Hy(z) = 16" — 4827 + 12
Hs(z) = 32z° —1602° + 120z)
He(z) = 642° + 4802 + 7202° — 120. ..

3 Operators

Every observable physical quantity can be characterised by an operator.

An operator is a mathematical device that converts one function into another. It is one step up from a
function, which is a device that converts one number (or collection of numbers) into another.

In general a caret or hat is used to denote an operator.

The simplest form of operator arises for physical observables that are just functions of position coordinates.
These just multiply the functions on which they operate.

Example: The classical potential energy of a harmonic oscillator is %kx? The associated quantum
mechanical operator 14 just multiplies any function by %k::rz, that is

VO(z) = %ka\If(x)

A more interesting type of operator is a differential operator.

For instance, the operator % changes the function sinz to cosz:

—sinz = cosx
dz
If a particle’s position is described by coordinates (z,y, z), then its momentum in the x direction is given

by the operator
e in
Da = oz

Where partial derivatives have been used because there are often several coordinates to consider. The form
of the quantum operator for momentum, p, is unusual, it does not appear to have any correspondance with



classical momentum, mv. This form represents another of the basic axioms on which quantum mechanics
has been developed.

If we can write some physical quantity in terms of position and momentum variables, then the rules for
constructing operators are:

e All position variables remain unchanged

e A momentum in the direction of a coordinate q is replaced by the operator —iha%.

Notes:

e We almost always work with momentum in quantum mechanics rather than velocity.

e This second rule applies to angular coordinates as well as Cartesian ones. For example, rotation
about the z axis is often described using a polar coordinate ¢. Angular momentum about the z axis
is then described by the operator —iha%.

3.1 Expectation Values

In quantum mechanics every physical observable, (), can be characterised by an operator, Q, and the
expectation value of () is calculated as
[ erQudr
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Here [ ...dr is a conventional notation meaning that we integrate over all the variables and over all space.

The order of the factors in the numerator is important: operators operate to the right only, so in this
case () operates only on ¥, not on ¥*. This does not matter for position operators, which operate by
multiplication, but is crucial for differential operators.

3.2 Dirac Notation

The notation |¥) is often used for the wavefunction ¥. Often we abbreviate, writing |¥,) as |n). |¥,) or
|n) is called a ket vector.

(P| is called a bra vector. The bra notation implies the complex conjugate U*.

a complete bra-ket expression like (¥|®) or (¥|Q|¥) implies integration over all space.

Thus
W[y = /\I!*\I!dr
= /|x11|2d7
(T|Q|T) = /\II*Q\IldT
and .
o= 58



3.3 Eigenfunctions and Eigenvalues

Suppose that we have an operator Q and a wavefunction ¥, that satisfy the equation:

Q‘I’q =q¥, (9)

where ¢ is just a number (with the appropriate dimensions). That is, if ¥, depends on some set of variables
(z1,%2,...) then ¢ is independent of all these variables.

Equation (9) is an eigenvalue equation. The wavefunction ¥, is an eigenfunction and ¢ is the corre-
sponding eigenvalue.

Much of the effort in practical quantum chemistry involves finding eigenfunctions and eigenvalues of inter-
esting operators.

The operator for energy is called the Hamiltonian and its symbol is . Its eigenvalue equation is
Schridinger’s time-independent equation:
HY = EY (10)

In general this equation has many solutions
HY, = E,V,, n=123,...

and we have a set of eigenfunctions v,, for Hamiltonian. In such cases the symbol ¢ does not carry any
information, and the label n is important, so it is common to use the Dirac notation |n), which gives the
label more prominence.

A general property of the set of eigenfunctions of an operator like the Hamiltonian is that they are or-
thogonal;

(m|n>5/0a1/1:n¢nda::0 if m#n

Another important property is that the eigenfunctions form a complete set, provided that E,, — oo as
n — o0o. That is, any function of the same variables with the same boundary conditions can be expressed
as a linear combination of the v,:
U= Z Cntn
n

3.4 Hermiticity

This is an important technicality. Hermiticity is a generalisation of complex conjugation: under complex
conjugation an operator () becomes its Hermitian conjugate, Q1.

Consider the complex conjugation:

i = { [viQuir

/1/11 (Q%)*dT
= (Qo|¢1)

However, we can consider the bra vector, (] in terms of a new operator, Q. Where we define

{Ql2)}Y" = [Qu2)" = (Qu2| = (12]Q"



Therefore we can write . . .
(W1|QUp2)* = (Qub2ltbr) = (12| QT |¢h1) (11)

Thus every operator Q has a Hermitian conjugate, QT, which can be defined using eq. (11), or its
integral equivalent:

[ i@uadr = [(@1)sar

An operator that is equal to its Hermitian conjugate is said to be Hermitian.

Example: Find the Hermitian conjugates of the operators - 7o and z

[ wi%ta = - [ ;’
= [y s
therefore (%)T = _%
[ wifpa = wiior [ s
NG R
therefore (i%)T = i%

Thus i% is Hermitian (cf the momentum operator) but % is not.

3.5 Properties of Hermitian operators:

e Their eigenvalues are always real

e Figenfunctions corresponding to different eigenvalues are orthogonal
Proof: Show the eigenfunctions of a Hermitian operator are real and that eigenfunctions with different
eigenvalues are orthogonal

Suppose 17 and 1 are eigenfunctions of an Hermitian operator B with eigenvalues b; and b,. Then, using
Dirac notation:

Bi|l/11> = bilt1) (a)
Blpa) = bofip2) (D)

Premultiply eq. (a) by ¥ and integrate over all space (this is a standard trick and is used in most proofs
in quantum mechanics):

(2| Blor) = br (32|th)

Now take the complex conjugate:

<1/12|B|1/’1>* = bf<¢2|¢1>*



Now use Hermiticity:

(1] Bltba) = 07 (1 [¢2)
Premultiply eq. (b) by ¥f and integrate over all space:

(1| Blip2) = bo (W1 |2)

Combining the last two results:

(b7 = b2){(W1]b2) =0
Now, if we had started with ¥ = ¢); and by = b; then we would have

(bf - bl)(¢1|1/11> =0

But the integral of |1 |? over all space is non-zero, (the basic postulate of quantum mechanics that |¢|? is
proportional to probability) so for the equation to be true we must have by = by, that is, the eigenvalues
must be real.

Alternately, if we had started with by # by then we must conclude that the integral (11 ]12) = 0. Hence the
eigenfunctions of a Hermitian operator with different eigenvalues are orthogonal. This is one side of an if
and only if proof, it can also be shown that if an operator has all its eigenvalues real and its eigenfunctions
orthogonal it must be Hermitian.

Other useful properties of Hermitian operators are, if A and B are Hermitian:

o If A is invertible so is AT and (AT)~! = (A=!)f

o (A+B)t = At + Bt

o (M)t = X\* At where A\* is the complex conjugate of the scalar A
o (AB)t = Bt At

All observable (measurable) properties of a system must be real and hence the operators associated with
observable properties, like the Hamiltonian, momentum, dipole moment etc, are Hermitian. Thus, when
we deal with such operators, we can make use of all the useful properties of Hermitian operators.

Another property of operators is that, if two observables are to have simultaneously precisely defined values,
their corresponding operators must commute. If you would like more details on this please let me know (if
nothing else it will tell me if anyone has actually read this far!!)

This (non-examinable) description of some of the mathematics behind quantum mechanics touches on the
20th century advances in mathematical theory. (Most of the maths we use is 19th century or earlier).
The most elegant derivation of quantum mechanics (to me anyway) comes from the recognition that the
quantum mechanical commutator, identified as the Lie bracket, generates a Lie Algebra. The eigenvalues
of the operators are the roots of the Lie Algebra. As such the recurrence relations between the various
eigenfunctions (and step-up and step-down operators) arise as the operators that step from one root of the
Lie algebra to the next.



